• Home
  • Indicative Literature

Indicative Literature Survey (2011)

[1]

Abrate S. Impact on composite structures. Cambridge University Press, 1998.

[2]

Abrate S. Modeling of impacts on composite structures. Composite Structures 2001; 51(2), 129-138.

[3]

Xu LR, Rosakis AJ. Impact failure characteristics in sandwich structures. Part I: Basic failure modes selction. International Journal of Solids and Structures 2002; 39(16), 4215-4235.

[4]

Hazizan MA, Cantwell WJ. The low velocity impact response of foam based sandwich structures. Composites Part B: Engineering 2002; 33(3), 193-204.

[5]

Villanueva GR, Cantwell WJ. The high velocity impact response of composite and FML-reinforced sandwich structures. Composites Science and Technology 2004; 64(1), 35-54.

[6]

Vaidya UK, Nelson S, Sinn B, Mathew B. Processing and high strain rate impact response of multi-functional sandwich composites. Composite Structures 2001; 52(3-4), 429-440.

[7]

Zhao H, Elnasri I, Abdennadher S. An experimental study on the behaviour under impact loading of metallic cellular materials. International Journal of Mechanical Sciences 2005; 47(4-5), 757-774.

[8]

Lira C, Scarpa F. Transverse shear stiffness of thickness gradient honeycombs. Composites Science and Technology 2010; 70(6), 930-936.

[9]

Olsson R. Closed form prediction of peak load and delamination onset under small mass impact. Composite Structures 2003; 59(3), 341-349.

[10]

Olsson R, Donadon MV, Falzon BG. Delamination threshold load for dynamic impact on plates. International Journal of Solids and Structures 2006; 43(10), 3124-3141.

[11]

Camanho PP, Dàvila CG. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002-211737.

[12]

Zhou DW, Stronge WJ. Low velocity impact denting of HSSA lightweight sandwich panel. International Journal of Mechanical Sciences 2006; 48(10), 1031-1045.

[13]

Meo M, Morris AJ, Vignjevic R, Marengo G. Numerical simulations of low-velocity impact on an aircraft sandwich panel. Composite Structures 2003; 62(3-4), 353-360.

[14]

Buitrago BL, Santiuste C, Sànchez-Sàez S, Barbero E, Navarro C. Modelling of composite sandwich structures with honeycomb core subjected to high-velocity impact. Composite Structures 2010; 92(9), 2090-2096.

[15]

Reddy JN. Mechanics of laminated plates and shells – theory and analysis. CRC Press,2004.

[16]

Perel VY, Palazotto AN. Dynamic geometrically nonlinear analysis of transversely compressible sandwich plates. International Journal of Solids and Structures 2003; 38(3), 337-356.

[17]

Icardi U, Ferrero L. Impact analysis of sandwich composites based on a refined plate element with strain energy updating. Composite Structures 2009; 89(1), 35-51.

[18]

Saravanos DA, Heyliger PA. Mechanics and computational models for laminated piezoelectric beams, plates and shells. ASME Applied Mechanics Reviews 1999; 52(10), 305-320.

[19]

Chopra I. Review of state of art of smart structures and integrated systems. AIAA Journal 2002; 40(11), 2145-2187.

[20]

Benjeddou A. Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Computers and Structures 2000; 76(1), 347-363.

[21]

International Journal for Numerical Methods in Engineering 2007; 70(10), 1135-1181.

[22]

Choi K, Chang FK. Identification of foreign objects impact in structures using distributed sensors. Journal of Intelligent Material Systems and Structures 1994; 5(6), 864-869.

[23]

Tracy M, Chang FK. Identifying impacts in composite plates with piezoelectric strain sensors. Part I: Theory. Journal of Intelligent Material Systems and Structures 1998; 9(11), 920-928.

[24]

Tracy M, Chang FK. Identifying impacts in composite plates with piezoelectric strain sensors. Part II: Experiment. Journal of Intelligent Material Systems and Structures 1998; 9(11), 929-937.

[25]

Osmont D, Dupont M, Gouyon R, Lemistre M, Balageas D. Piezoelectric transducer network for dual mode (active-passive) detection, localization, and evaluation of impact damages in carbon /epoxy composite plates. Proceeding of SPIE - The International Society for Optical Engineering 2000; 4073, 130-137.

[26]

Kim IG, Lee HY, Kim JW. Impact damage detection in composite laminates using PVDF and PZT sensor signals.Journal of Intelligent Material Systems and Structures 2005; 16(11-12), 1007-1013.

[27]

Qing XP, Beard SJ, Kumar A, Ooi TK, Chang FK. Built in sensor network for structural health monitoring of composite structure.Journal of Intelligent Material Systems and Structures 2007; 18(1), 39-49.

[28]

Salamone S, Bartoli I, Di Leo P, Di Scala FL, Ajovalasit A, D’Acquisito L. High velocity impact location on aircraft panels using macro-fiber composite piezoelectric rosettes.Journal of Intelligent Material Systems and Structures 2010; 21(9), 887-896.

[29]

Abramovitch H, Burgard M, Edery-Azulay L, Evans KE, Hoffmeister M, Miller W, Scarpa F, Smith CW, Tee KF. Smart tetrachiral and hexachiral honeycomb: Sensing and impact detection. Composites Science and Technology 2010; 70(7), 1072-1079.

[30]

Hagood NW, Von Flotow AH. Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration 1991; 146(2), 243-268.

[31]

Davis CL, Lesieutre GA. A modal strain energy approach for the prediction of resistively shunted piezoceramic damping. Journal of Sound and Vibration 1995; 184(1), 129-139.

[32]

Saravanos DA. Passively damped laminated piezoelectric shell structures with integrated electrical networks. AIAA Journal 2000; 38(7), 1260-1268.

[33]

Richard C, Guyomar D, Audigier D, Ching G. Semi passive damping using continuous switching of a piezoelectric device. Proceeding of SPIE - The International Society for Optical Engineering 1999; 3672, 104-111.

[34]

Corr LR, Clark WW. Comparison of low frequency piezoelectric shunt techniques for structural damping. Smart Materials and Structures 2002; 11(3), 370-376.

[35]

Lesieutre GA, Ottman GK, Hofmann HF. Damping as a result of piezoelectric energy harvesting. Journal of Sound and Vibration 2004; 269(3-5), 991-1001.

[36]

Makihara K, Onoda J, Miyakawa T. Low energy dissipation electric circuit for energy harvesting. Smart Materials and Structures 2006; 15(), 1493-1498.

[37]

Shen H, Ji H, Qiu J, Zhu K. A semi-passive vibration damping system powered by harvested energy. International Journal of Applied Electromagnetics and Mechanics 2009; 31(), 219-233.

[38]

Ottman GK, Hofmann HF, Lesieutre GA. Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Transactions on Power Electronics 2003; 18(2), 696-703.

[39]

Lefeuvre E, Badel A, Richard C, Petit L, Guyomar D. A comparison between several vibration-powered piezoelectric generators for standalaone systems. Sensors and Actuators A 2006; 126(2), 405-416.

[40]

Sodano HA, Inman DJ, Park G. Comparison of piezoelectric energy harvesting devices for recharging batteries. Journal of Intelligent MaterialSystems and Structures 2005; 16(10), 799-807.

[41]

Lin Y, Sodano HA. Characterization of multifunctional structural capacitors for embedded energy storage. Journal of Applied Physics 2009; 106(), 114108-1–114108-5.

[42]

Bailey T, Hubbard JE. Distributed piezoelectric polymer active vibration control of a cantilever beam. Journal of Guidance, Control and Dynamics 1985; 8(5), 605-611.

[43]

Palazzolo AB, Lin RR, Alexander RM, Kascak AF, Montague J. Test and theory for piezoelectric actuator – active vibration control of rotating machinery. Journal of Vibration and Acoustics 1991; 113(2), 167-175.

[44]

Luo ZH, Kitamura N, Guo BZ. Shear force feedback control of flexible robot arms. IEEE Transactions on Robotics and Automation 1995; 11(5), 760-765.

[45]

Baz A, Poh S. Performance of an active control system with piezoelectric actuators. Journal of Sound and Vibration 1988; 126(2), 327-343.

[46]

Lammering R. The application of a finite shell element for composites containing piezo-electric polymers in vibration control. Composite Structures 1991; 41(5), 1101-1109.

[47]

Chandrashekhara K, Agarwal AN. Active vibration control of laminated composite plates using piezoelectric devices: A finite element approach. Journal of Intelligent Material Systems and Structures 1993; 4(4), 496-508.

[48]

Chandrashekhara K, Smyser CP, Agarwal AN. Dynamic modeling and neural control of composite shells using piezoelectric devices. Journal of Intelligent Material Systems and Structures 1998; 9(1), 29-43.

[49]

Trindade MA, Benjeddou A, Ohayon R. Piezoelectric active vibration control of damped sandwich beams. Journal of Sound and Vibration 2001; 246(4), 653-677.

[50]

Raja S, Prathap G, Sinha PK. Active vibration control of composite sandwich beams with piezoelectric extension-bending and shear actuators. Smart Materials and Structures 2002; 11(1), 63-71.

[51]

Boudaoud H, Belouettar S, Daya EM, Potier-Ferry M. A shell finite element for active-passive vibration control of composite structures with piezoelectric and viscoelastic layers. Mechanics of Advanced Materials and Structures 2008; 15(3-4), 208-219.

[52]

Saravanos DA, Christoforou AP. Low-energy impact of adaptive cylindrical piezoelectric-composite shells. International Journal of Solids and Structures 2002; 39(8), 2257-2279.

[53]

Saravanos DA. Coupled mixed-field laminate theory and finite element for smart piezoelectric composite shell structures. AIAA Journal 1997; 35(8), 1327-1333.

[54]

Hagood NW, Horodezky J. Method and apparatus for active control of golf club impact. US Pattent Application Publication No. US 2010/0292024 A1, November 2010.

[55]

Gibson RF. A review of recent research on mechanics of multifunctional composite materials and structures. Composite Structures 2010; 92(12), 2793-2810.